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LETTER TO THE EDITOR 

Scattering amplitudes for supersymmetric shape-invariant 
potentials by operator methods 

Avinash Kharet and Uday P Sukhatme 
Department of Physics, University of Illinois at Chicago, Chicago, IL 60680, USA 

Received 23 February 1988 

Abstract. The scattering amplitudes for all currently known supersymmetric shape-invariant 
potentials are calculated by analytically continuing the explicit wavefunctions obtained 
recently via supersymmetric operator techniques. The procedure is illustrated in detail for 
the superpotential W ( x )  = A tanh ax + B sech ax, for. which the S matrix has not been 
previously calculated. 

Recently, the familiar harmonic oscillator raising and lowering operator technique has 
been generalised to other potentials of physical interest (Gendenshtein 1983, Dutt et 
a1 1986, 1988). In particular, using the operator technique, bound-state eigenvalues 
and eigenfunctions have been obtained for all known shape-invariant potentials. The 
purpose of this letter is to obtain analytic expressions for the scattering amplitudes 
for shape-invariant potentials. Our approach is very general and is based on the explicit 
wavefunctions obtained recently (Dabrowska et al 1988) via supersymmetric operator 
techniques. Scattering amplitudes are calculated by analytically continuing the 
wavefunctions so that boundary conditions appropriate to scattering are satisfied. An 
alternative method was suggested very recently by Cooper et al (1987). It is rather 
elegant but, as we shall discuss below, it suffers from very restricted applicability. We 
shall illustrate both approaches by explicitly working out the reflection and transmission 
coefficients for the class of potentials 

V ( x ) = A 2 + ( B 2 - A 2 - A a ) ~ e c h 2 a x + B ( 2 A + a ) s e c h a x  t anhax  (1) 

which results from the superpotential W(x) = A tanh a x +  B sech ax. As far as we are 
aware, this exactly solvable potential has essentially been overlooked in the literature. 
The results for the scattering amplitudes of all currently known shape-invariant poten- 
tials are summarised in tables 1 and 2. 

In supersymmetric quantum mechanics (Witten 1981, Cooper and Freedman 1983) 
the superpotential W(x) determines the two-partner potentials V,(x) = 
W2(x) *d W/dx ( A  = 2m = 1). When supersymmetry is unbroken, the eigenstates of 
V ,  are related by 

E ( - )  n + l -  -E(+' n EL-' = 0 +j;"a A+',-), +i;?, cc A++:) 
( 2 )  

where 

d d d 
dx dx dx 

A'= --+ W(X) W(x) = --[In +h-'(x)]. A = - +  W(X) 

t On leave of absence from Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India. 
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Now, in order to have scattering, the potentials V, must be finite either at x = -CO or 
at x = +CO or both. Let W(x = *CO)  = W,. Then for finite W,, both V, have values 
W: at x+*oo. 

Let us consider an incident plane wave eikx of energy E coming from x + -CO. As 
a result of scattering from the potentials V,, one obtains transmitted waves T,(k) eik’x 
and reflected waves R,(k) e-ikx. In view of (2), one finds that the transmission and 
reflection amplitudes for the partner potentials V, are related by 

where k and k’ are given by 

k = ( E  - W!)”’ k’ = ( E  - W:)1’2. ( 5 )  

Equation (4) is a fairly straightforward generalisation of a simpler situation when 
W: = W? which was discussed by various people (Sukumar 1986, Akhoury and Comtet 
1984). A few remarks are in order. (i) Clearly IR_/* = IR+IZ and lT-12= IT+I*, i.e. the 
partner potentials have identical reflection and transmission probabilities. (ii) R-(  T-) 
and R+( T+) have the same poles in the complex k plane except that R-( T-) has an 
extra pole at k = -i W-. This pole is on the positive imaginary axis only if W- < 0 (i.e. 
if SUSY is unbroken) in which case it corresponds to a zero-energy bound state. (iii) 
In the special case of W+ = W- we have T-( k) = T+( k) while if W- = 0 then R-(  k) = 
a-R+( k). (iv) For the case of three-dimensional central potentials we analogously 
find that the scattering matrix S( k’) is given by S-( k’) = [( W+ - ik’)/( W+ + i k’)]S+( k‘) 
where W+ = W( r + +CO), and S (  k’) = 

The two supersymmetric partner potentials V , ( x )  are said to be shape invariant if 
where 6(  k’) is the phase shift. 

V*(X, a,) = V-(X, a,)+ C(a1) ( 6 )  

where a, is a set of parameters and a, = f(a,) is a function of a,. Using (2), (3)  and 
(6) Gendenshtein (1983) and Dutt et a1 (1986) have shown that shape-invariant 
potentials are analytically solvable, i.e. 

n 

El;’= c C(a,) Eb-’ = 0 ak = f k  (a,) (7) 

$;-)(X, a,)aA+(x,  a,)A+(x, U , ) .  . .A+(x, a,-,)$b-’(x, an) .  

k = l  

(8) 

For shape-invariant potentials, the relation between R, and T, takes a particularly 
simple form (Cooper et al 1987): 

T-(k, a,) = ( w+(ao)-ik’) T-(k, al) .  (9) 
W-( a,) + i k 
W-(a,)-ik W-( a,) - i k 

R-(k, a,) = 

Repeating the above step N times gives 

N - l  ( W-(a,)+ik 
, =o W-( a,) - i k 

N - l  (W+(a,)-ik’ ) T-(k, 
,=, W-(a,)-ik 

R-(k, a,) = n ) R-(k, U N )  

T-(k a,)= n 
For all known shape-invariant potentials it turns out that aN = a,* Na. Hence 

T-( k, a,)( R-( k, a,)) is known for all values of a, provided it is known in some strip, 
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say 0s a, < a. Unfortunately in most cases it is not that easy to know T or R for a 
finite range of parameters a,. Hence this elegant approach has rather limited applica- 
bility. 

We first present a straightforward approach for calculating scattering amplitudes 
by making use of (8), the operator expression for the bound-state wavefunctions. Using 
this expression, we have recently been able to obtain nth-state wavefunctions for all 
the known shape-invariant potentials (see table 1 of Dabrowska et af (1988)). Now 
in order to impose boundary conditions appropriate to the scattering problem, two 
modifications of the bound-state wavefunctions have to be made. (i) Instead of the 
parameter n labelling the number of nodes, one must use the wavenumber k' as given 
by ( 5 )  so that the asymptotic behaviour exp [-x( W: - E,)'"] as x + +CO is replaced 
by eik'x. (ii) The second solution of the Schrodinger equation must be kept-it has 
been discarded for bound-state problems since it diverged asymptotically. 

To clarify the whole procedure, we now explicitly compute T and R for the class 
of potentials given by (1). The energy eigenstates are (Dabrowska et al 1988) 

E, = a2[s2 - ( S  - n ) 2 ]  

2 - s / 2  I ' (n+iA-S+$) 
n !I'(iA - S+$)  

!b ,=(l+y ) exp(-A tan- 'y) 

1 + iy 
2 

-n,n-2S,iA-S+$;- 

where S = Ala ,  A = B / a ,  y = sinh ax.  On replacing 
following two independent scattering solutions: 

(126) 

n by S + ik/ a we then obtain the 

2 -s/2 
F2 = (1 + y ) exp( -A tan-' y) 

Now it is well known that if the asymptotic behaviour of Fl,2 is given by 

lim C(x)  = a,, eikx+ b,, e-ikx ( i  = 1,2) (14) 
X'*gi  

then (for example, see ter Haar 1975) 

bl+t.2-- b,-b2+ 
(15) 

a2+b,+ - a,+b2+ 
a,-b,+ - a,-b*+ 

T =  R =  
a2-bl+ - al-b2+ * 

By using standard identities of hypergeometric functions we can now extract the 
asymptotic behaviour of Fl and F2 and hence the coefficients a,*, bi,. We find 

bl- = erp[ (-;+A k 
+ i s ) ]  

b ,+=C,exp[~(- ; -A- iS) ]  k - S + ( f i k / a )  a , -=exp  
2 
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a,, = iD2 exp[ 4 ( -%+ A +is)] - S - (2ik/ a )  b,- = -exp 
2 

where 

T(iA -S+;)r(-2ik/a)  
r[ - S  - (i  k/ a)]T[iA + $ - (i  k/ a)] 

T(iA -S+t )T(2 ik /a )  
- r[ -S + (i  k/ a)]r[iA +$ + (i  k/ a)]  

r(g+ S - ih  )T( -2ik/ a )  
r[$-iA -(ik/a)]T[l  +S-  ( ik l a ) ]  

r(i+ S -iA)r(-2ik/a) 
r[f-iA +(ik/a)]T[l  + S + ( i k / a ) ]  ' 

c, = 

D -  

c, = 

(176) 
D2 = 

On using (16) and (17) in (15) and after a considerable amount of algebraic 
simplification we obtain 

T(k, S, A )  = 
T[-S - (ik/a)]T[ 1 + S - (ik/a)]I'[i+iA - (ik/a)]T[t-iA - ( ik /a ) ]  

T( -ik/ a ) r [  1 + (ik/ a)]T2[t - (ik/ a )] 
(18a) 

(18b) 
R(k, S, A )  = T(k, S, A)(cos TS sinh T A  sech Tk/a  + i  sin TS cosh T A  cosech rrk/a).  

As a check we indeed verify that IR12+1T12= 1. Further, we find that the poles of 
T( R )  on the positive imaginary k axis are indeed at k/ a = i(s - n )  and correspond to 
the correct bound-state energies. Finally, we find that T(R)  have resonance poles at 
k/ a = *A - ( n  + f)i. 

Proceeding in the same way we have calculated the scattering amplitude for all 
known shape-invariant potentials. Our results are summarised in tables 1 and 2, where 
we have given the superpotential W (  x), potential V - ( x )  and reflection and transmission 
coefficients (or scattering matrix for three-dimensional problems). It is worthwhile 
pointing out that a special case of the symmetric Rosen-Morse potential is the 
8-function potential in the limit a +CD with A held fixed. In that case T and R of 
table 1 reduce to T= ik / ( ik+A) ,  R =A/ ( ik+A)  (Flugge 1971). Similarly the limit 
a + CD for the asymmetric Rosen-Morse potential gives well known results for R and 
T corresponding to a step potential. 

Before finishing this letter we would like to shed some light on the elegant but 
restricive approach of calculating T and R as given by (9)-(11). In particular, we 
show that T and R for the potentials of (1) can be obtained in this approach only by 
exploiting the symmetry of the potential. Since W, = *Sa, (10) and (1 1) can be written 
in the form 

T(k, s, A )  - T(k,S-n,A) T'.. r[ S - (i  k/ a) + l]r[ -S - (i  k/ a)]  - r[ S - n - (ik/ a )  + 1]r[ -S + n - (ik/ a)] 
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R(k, S, A )  - R(k,S-n,A) R t S  
T[S-( ik /a )+  l]T[-S-(ik/a)]-  (--')'T[S- n - ( i k / a ) +  l]T[-S+ n - ( ik / a ) ]  ' 

(19b) 

From here it is clear that the most general form for T and R is given by 

T[S - ( ik / a )  + l]r[ -S - ( ik /a ) ]  

=f"'(k, A)+xf!,"(k, A )  sin 2n1rS+xfr ' (k ,  A )  cos 2n7rS 

=x g"'(k, A )  s in(2nS 1)1rS+x gi2)(k, A )  cos(2n+ l ) d  (19d) 

where n = i l ,  i2, *3,. . . . Note that the g'"(k, A )  term in R'(k, S, A )  is absent since 
R'(k, S, A )  = -R'(k, S -  1, A )  while g(k, A )  is independent of S! Similar expressions 
can also be written down for other shape-invariant potentials but it is hard to proceed 
further and obtain f'"' and g'"' in most cases without having recourse to perturbation 
theory. 

We now make use of the fact that the potentials of (1) (apart from the constant 
A*) are invariant under the transformation (A = Sa, B = h a )  

and A + A t  = i({ + S) (20) s+ S'= -1- iA 

so that 

This condition uniquely fixes the A dependence off '")  and g ' " )  and we obtain 

T(k, s, A 1 
r[S+ 1 - (ik/c~)]T[-S- ( ik /a ) ] r [ i -  ( i k l a )  -iA]T[3-(ik/a)+iA] 

=f' ' ' (  k)+xf;*'(k) cosh 21rnA cos 21rS 

+ x f y ' ( k )  sinh 21rnA sin 21rS 

R(k. S. A )  
r[ S + 1 - (ik/ a)]T[ - S  - (ik/a)]T[$ - (ik/ a )  - iA]r[f - ( ik / a )  + i A  ] 

= gy'(k) sin(2n + 1 ) r S  cosh(2n + l ) r h  

= E  g',2'(k) cos(2n + 1 ) r S  sinh(2n + l ) ? r A .  (22b) 

Now we also know that for A = 0, the potential reduces to symmetric Rosen-Morse 
potential for which T and R are well known, i.e. 

T[S+ 1 - ( ik/a)]r[-S-( ikla)]  
r( - ik / a ) r [  1 - ( ik /a ) ]  

T( k, S, 0) = 

i sin TS 
sinh T k / a  ' 

R(k, S, 0) = T(k, S, 0) 



L508 Letter to the Editor 

Hence we have from (22) and (23) 

1 
r’[f - (ik/ .)]I-( -ik/ a)T[  1 - (ik/ a ) ]  f i 2 ’  = 0 f ( O ) (  k )  = (24a) 

1 
(24b) g‘2’ = 6 

sinh( .irk/ a)r’[f - (ik/ a ) ] r (  -ik/ a )T[ 1 - (ik/ a ) ]  ’ 

Finally, notice that as A + -A, the potential ( 1 )  merely gets reflected and hence 
T ( k ,  S, A )  = T ( k ,  S, - A ) .  This is turn implies thatfi” = 0 so that one obtains T ( k ,  S, A )  
as given by (18a). Using (18a), (22b) and (24b) and the fact that IT12+IR12= 1 one 
then finds that 

1 
cosh( .irk/ a)r2[ f  - (ik/ .)]I-( -ik/ a ) r [  1 - (ik/ a ) ]  

g ( l )  = 6 , n n l  

so that one also obtains the correct expression for R(k ,  S, A )  as given by (18b).  

This work was supported in part by the US Department of Energy. 

References 

Akhoury R and Comtet A 1984 Nucl. Phys. B 246 253 
Cooper F and Freedman B 1983 Ann. Phys., N Y  146 262 
Cooper F, Ginocchio J N and Wipf A 1987 Los Alamos Preprint LAUR-87-3498 
Dabrowska J W, Khare A and Sukhatme U P 1988 J. Phys. A :  Math. Gen. 21 L195 
Dutt R, Khare A and Sukhatme U P 1986 Phys. Lett. 181B 295 
- 1988 Am. J. Phys. to be published 
Flugge S 1971 Practical Quantum Mechanics (Berlin: Springer) 
Gendenshtein L 1983 Zh. Eksp. Teor. Fiz. Pis. Red:38 299 (JETP Lett. 38 356) 
Sukumar C V 1986 J .  Phys. A :  Math. Gen. 19 2297 
ter Haar D 1975 Problems in Quantum Mechanics (London: Methuen) 
Witten E 1981 Nucl. Phys. B 185 513 


